A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA
نویسندگان
چکیده
A multifunctional reagent based on a coumarin scaffold was developed for derivatization of naive RNA. The alkylating agent N3BC [7-azido-4-(bromomethyl)coumarin], obtained by Pechmann condensation, is selective for uridine. N3BC and its RNA conjugates are pre-fluorophores which permits controlled modular and stepwise RNA derivatization. The success of RNA alkylation by N3BC can be monitored by photolysis of the azido moiety, which generates a coumarin fluorophore that can be excited with UV light of 320 nm. The azidocoumarin-modified RNA can be flexibly employed in structure-function studies. Versatile applications include direct use in photo-crosslinking studies to cognate proteins, as demonstrated with tRNA and RNA fragments from the MS2 phage and the HIV genome. Alternatively, the azide function can be used for further derivatization by click-chemistry. This allows e.g. the introduction of an additional fluorophore for excitation with visible light.
منابع مشابه
A fluorescent radioiodinated oligonucleotidic photoaffinity probe for protein labeling: synthesis and photolabeling of thrombin.
To study the interactions between oligonucleotides and proteins, an original photoaffinity radiolabeling probe has been synthesized. Starting with a 5'-pyridyldithio-3'-amino-oligonucleotide, the photophore benzophenone was first coupled to the 3' end, through acylation by an activated ester of benzoylbenzoic acid. A fluorescein molecule was grafted by alkylation of the free 5'-SH. This compoun...
متن کاملEfficient Access to 3′-Terminal Azide-Modified RNA for Inverse Click-Labeling Patterns
Labeled RNA becomes increasingly important for molecular diagnostics and biophysical studies on RNA with its diverse interaction partners, which range from small metabolites to large macromolecular assemblies, such as the ribosome. Here, we introduce a fast synthesis path to 3'-terminal 2'-O-(2-azidoethyl) modified oligoribonucleotides for subsequent bioconjugation, as exemplified by fluorescen...
متن کاملRegenerative biomaterials that "click": simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning.
The click chemistry era has generated a library of versatile "spring-loaded" reactions that offer high yields, regio- and stereospecificity, and outstanding functional group tolerance. These powerful transformations are particularly advantageous for the design of sophisticated biomaterials that require high levels of precision and control, namely, materials that promote tissue regeneration such...
متن کاملSpecific labeling of zinc finger proteins using noncanonical amino acids and copper-free click chemistry.
Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic inco...
متن کاملSolid-phase synthesis of PEGylated lipopeptides using click chemistry.
A versatile methodology for efficient synthesis of PEGylated lipopeptides via CuAAC "Click" conjugation between alkyne-bearing solid-supported lipopeptides and azido-functionalized PEGs is described. This new and very robust method offers a unique platform for synthesizing PEGylated lipopeptides with a high level of complexity. These molecules, obtained in a single purification step, are ideall...
متن کامل